Real analysis qualifying exam

August 2024
Each problem is worth ten points. Work each problem on a separate piece of paper. If you are not sure whether or not you are allowed to use a particular result to solve a problem, ask. d x d x dxd xdx denotes the Lebesgue measure.
  1. Let f L + ( X , M , μ ) f L + ( X , M , μ ) f inL^(+)(X,M,mu)f \in L^{+}(X, \mathcal{M}, \mu)fL+(X,M,μ) be a non-negative measurable function on a measure space.
    (a) Show that if f d μ < f d μ < int fd mu < oo\int f d \mu<\inftyfdμ<, then f < f < f < oof<\inftyf< a.e.
    (b) Show that if f d μ = 0 f d μ = 0 int fd mu=0\int f d \mu=0fdμ=0, then f = 0 f = 0 f=0f=0f=0 a.e.
  2. Let f ( x , t ) : [ 0 , 1 ] × [ 0 , 1 ] R f ( x , t ) : [ 0 , 1 ] × [ 0 , 1 ] R f(x,t):[0,1]xx[0,1]rarrRf(x, t):[0,1] \times[0,1] \rightarrow \mathbb{R}f(x,t):[0,1]×[0,1]R be a measurable function such that for every x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], the mapping t f ( x , t ) t f ( x , t ) t|->f(x,t)t \mapsto f(x, t)tf(x,t) is continuous, and furthermore there exists a function g L 1 ( [ 0 , 1 ] , d x ) g L 1 ( [ 0 , 1 ] , d x ) g inL^(1)([0,1],dx)g \in L^{1}([0,1], d x)gL1([0,1],dx) such that for each ( x , t ) [ 0 , 1 ] × [ 0 , 1 ] , | f ( x , t ) | g ( x ) ( x , t ) [ 0 , 1 ] × [ 0 , 1 ] , | f ( x , t ) | g ( x ) (x,t)in[0,1]xx[0,1],|f(x,t)| <= g(x)(x, t) \in[0,1] \times[0,1],|f(x, t)| \leq g(x)(x,t)[0,1]×[0,1],|f(x,t)|g(x). Show that
h ( t ) = 0 1 f ( x , t ) d x h ( t ) = 0 1 f ( x , t ) d x h(t)=int_(0)^(1)f(x,t)dxh(t)=\int_{0}^{1} f(x, t) d xh(t)=01f(x,t)dx
is continuous.
3. Let X X XXX and Y Y YYY be topological spaces, and X × Y X × Y X xx YX \times YX×Y their product space with the product topology. Denote B X , B Y , B X × Y B X , B Y , B X × Y B_(X),B_(Y),B_(X xx Y)\mathcal{B}_{X}, \mathcal{B}_{Y}, \mathcal{B}_{X \times Y}BX,BY,BX×Y the corresponding Borel σ σ sigma\sigmaσ-algebras. Show that if A B X A B X A inB_(X)A \in \mathcal{B}_{X}ABX and B B Y B B Y B inB_(Y)B \in \mathcal{B}_{Y}BBY, then A × B B X × Y A × B B X × Y A xx B inB_(X xx Y)A \times B \in \mathcal{B}_{X \times Y}A×BBX×Y.
4. Let F F FFF be a Lipschitz continuous function on R R R\mathbb{R}R, that is, | F ( x ) F ( y ) x y | M F ( x ) F ( y ) x y M |(F(x)-F(y))/(x-y)| <= M\left|\frac{F(x)-F(y)}{x-y}\right| \leq M|F(x)F(y)xy|M for all x y x y x!=yx \neq yxy. Recall that this implies that F F F^(')F^{\prime}F exists a.e. on R R R\mathbb{R}R. Show that for any a < b a < b a < ba<ba<b,
a b F ( x ) d x = F ( b ) F ( a ) a b F ( x ) d x = F ( b ) F ( a ) int_(a)^(b)F^(')(x)dx=F(b)-F(a)\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)abF(x)dx=F(b)F(a)
You are not allowed to refer to the fact that this conclusion holds for any absolutely continuous function.
5. Let
C 0 , 0 [ 0 , 1 ] = { f C ( [ 0 , 1 ] , R ) : f ( 0 ) = f ( 1 ) } C 0 , 0 [ 0 , 1 ] = { f C ( [ 0 , 1 ] , R ) : f ( 0 ) = f ( 1 ) } C_(0,0)[0,1]={f in C([0,1],R):f(0)=f(1)}C_{0,0}[0,1]=\{f \in C([0,1], \mathbb{R}): f(0)=f(1)\}C0,0[0,1]={fC([0,1],R):f(0)=f(1)}
Let P 0 , 0 P 0 , 0 P_(0,0)P_{0,0}P0,0 be the subset of polynomials in C 0 , 0 [ 0 , 1 ] C 0 , 0 [ 0 , 1 ] C_(0,0)[0,1]C_{0,0}[0,1]C0,0[0,1]. Prove that P 0 , 0 P 0 , 0 P_(0,0)P_{0,0}P0,0 is dense in C 0 , 0 [ 0 , 1 ] C 0 , 0 [ 0 , 1 ] C_(0,0)[0,1]C_{0,0}[0,1]C0,0[0,1] in the uniform topology.
6. Show that a normed space X X XXX is complete if and only if any absolutely convergent series is convergent (that is, whenever x n < x n < sum||x_(n)|| < oo\sum\left\|x_{n}\right\|<\inftyxn<, the series x n x n sumx_(n)\sum x_{n}xn converges in X X XXX ).
7. Let X X XXX and Y Y YYY be Banach spaces. If T : X Y T : X Y T:X rarr YT: X \rightarrow YT:XY is a linear map such that f T X f T X f@T inX^(**)f \circ T \in X^{*}fTX for every f Y f Y f inY^(**)f \in Y^{*}fY, show that T T TTT is bounded.
8. Let X X XXX be a Banach space, V X V X V sub XV \subset XVX a closed subspace, and x X V x X V x in X\\Vx \in X \backslash VxXV.
(a) Prove that there exists a linear functional ϕ x , V X ϕ x , V X phi_(x,V)inX^(**)\phi_{x, V} \in X^{*}ϕx,VX such that ϕ x , V | V = 0 , ϕ x , V = 1 ϕ x , V V = 0 , ϕ x , V = 1 phi_(x,V)|_(V)=0,||phi_(x,V)||=1\left.\phi_{x, V}\right|_{V}=0,\left\|\phi_{x, V}\right\|=1ϕx,V|V=0,ϕx,V=1, and ϕ x , V ( x ) = inf y V x y ϕ x , V ( x ) = inf y V x y phi_(x,V)(x)=i n f_(y in V)||x-y||\phi_{x, V}(x)=\inf _{y \in V}\|x-y\|ϕx,V(x)=infyVxy
(b) Suppose X X XXX is a Hilbert space, and V V VVV has an orthonormal basis { v i : i I } v i : i I {v_(i):i in I}\left\{v_{i}: i \in I\right\}{vi:iI}. Find a formula for ϕ x , V ϕ x , V phi_(x,V)\phi_{x, V}ϕx,V.
9. Let ( X , M , μ ) ( X , M , μ ) (X,M,mu)(X, \mathcal{M}, \mu)(X,M,μ) be a finite measure space, and 1 < p < 1 < p < 1 < p < oo1<p<\infty1<p<. Let f , f n L p ( X , d μ ) f , f n L p ( X , d μ ) f,f_(n)inL^(p)(X,d mu)f, f_{n} \in L^{p}(X, d \mu)f,fnLp(X,dμ) for n N n N n inNn \in \mathbb{N}nN be functions such that f n f f n f f_(n)rarr ff_{n} \rightarrow ffnf pointwise a.e. and sup n f n p < sup n f n p < s u p_(n)||f_(n)||_(p) < oo\sup _{n}\left\|f_{n}\right\|_{p}<\inftysupnfnp<. Show that f n f f n f f_(n)rarr ff_{n} \rightarrow ffnf weakly. You may use without proof that an integrable function is uniformly integrable. Comment: the result holds in general measure spaces, but you are not asked to prove that.
10. Give examples of the following. Justify your answers.
(a) A Banach space X X XXX, a closed subspace V V VVV, and a point x X x X x in Xx \in XxX such that
x y = inf z V x z x y = inf z V x z ||x-y||=i n f_(z in V)||x-z||\|x-y\|=\inf _{z \in V}\|x-z\|xy=infzVxz
for multiple y V y V y in Vy \in VyV.
(b) A bounded linear bijection between normed spaces which is not a homeomorphism.
(c) A bounded linear functional on ℓ^(oo)\ell^{\infty} which does not arise from duality with 1 1 ℓ^(1)\ell^{1}1.